
Batch Reading Densely Arranged QR Codes
Binyao Jiang, Yisheng Ji, Xiaohua Tian, Xinbing Wang

School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, China.

Email: {emberspirit,acetanil,xtian,xwang8}@sjtu.edu.cn.

Abstract—This paper presents BatchQR, a mobile APP that
can batch read the densely arranged QR codes attached to caps of
the tubes and vials in clinical and biological labs. The basic idea
of BatchQR is to detect each code in the image and then decode in
an one-by-one manner. However, the unique characteristics of the
QR code and the application scenario bring technical challenges:
First, off-the-shelf lightweight object detection mechanisms are
unable to distinguish those densely arranged codes that are highly
similar to each other; second, the focus area of the camera
is limited, which blurs or distorts parts of the image. To this
end, we propose a lightweight code detection mechanism, which
can adaptively adjust operating parameters to identify densely
arranged QR codes in practice. We also propose a simple but
effective image refocus mechanism, which takes an auto-focused
image and multiple refocused ones, and then replaces the blurred
or distorted code parts with the high-quality counterparts in the
refocused images. Comprehensive experimental results show that
BatchQR can read 160-180 Version 1-L QR codes in batch with
90%-95% accuracy in 10-14s, which is only 4% of the time
consumed by the regular QR code reader in the same situation.

I. INTRODUCTION

Tubes and vials are the most frequently used equipment
in clinical and biological labs for containing chemical or
biological samples. The routine lab experiments need a large
number of such containers, which must be labeled with the
information such as the sample’s source, type and infectious-
ness. In order to efficiently identify and track chemicals and
specimens, barcode labels are usually attached to the tube. In
particular, barcode labels are attached to the body of the tube
or vial, for which standards are developed to regulate how the
code should be designed [1], [2]. In order to prevent loss and
improve management efficiency, labeled containers are then
centrally stored in the holder rack; therefore, the barcode of
the container in the inner layer is blocked by those containers
in the outer layer, which makes it troublesome to search or
select specific ones.

To deal with the issue, the barcode for the body of the tube
is normally associated with a small QR (Quick Response)
code that is attached to the cap of the tube [3], [4], which
makes it possible to identify certain tubes without removing
them out of the holder. However, the QR codes attached to
those containers’ caps are densely arranged as shown in Fig. 1,
which are snapshots of real situations in the clinical lab of a
local hospital. Although the introduction of the on-cap QR
code can facilitate management of those containers, using
regular QR code readers is still inconvenient in this particular
application scenario. Existing code reading mechanism is
unable to read the densely arranged QR codes in batch, instead,

the user still needs to scan the code one after another when
searching for a specific tube or logging the information.

Fig. 1: Densely arranged tubes, a snapshot of real situations
in the clinical lab of a local hospital.

Fig. 2: Screen capture of BatchQR APP, where QR code tags
within the bounding box can be decoded successfully. It can
also show contents of those codes, and locate the chosen one,
which are filled with red color.

In contrast to batch reading, generating QR codes in bulk
is much easier [5], [6], where the data can be input in certain
format and the corresponding QR codes can be generated
in bulk automatically. The ZXing team creates an open-
source, multi-format 1D/2D barcode image processing library
implemented in Java [7]; the library is termed as “Zebra
Crossing”, which however is only able to process regular
QR codes images in an offline manner in the batch reading
scenario, while the field operator dealing with the situation as
shown in Fig. 1 requires to read in those QR codes on the
spot in an online manner. RFID techniques are also applied to
container management [8], [9]: each tube or vial is embedded
with a RFID chip or attached to a passive RFID tag; the
intelligent holder rack can automatically register the position
of the inserted container and the information is transmitted to
the cloud database. Nevertheless, RFID embedded tubes are
much more expensive than the regular ones, and the entire
system is even more costly.

Online handling the situation as shown in Fig. 1, we could
extract the codes in the image, and then decode the extracted
codes one by one in the background. It is seemingly that the

1216



code extraction can be easily realized by applying off-the-shelf
object detection mechanisms; however, the unique character-
istics of the object and the application scenario factually bring
technical challenges:

• Learning-based object detection mechanisms require high-
performance computational platform to achieve high accu-
racy and low latency [10], [11], which can not be satisfied by
the mobile device favored by the application scenario; non-
learning-based ones detect objects by the shape and color
features [12], [13], which however are almost the same for
all those QR codes as shown in Fig. 1, thus the approaches
usually mistake multiple codes to a single object.

• The focus area of the camera is limited, some subregions
in the image containing QR codes therefore can be blurred
or distorted if there are many codes in the batch. It is still
possible to detect those code areas even in the blurred or
distorted part of the image; however, the errors incurred by
the low image quality usually go beyond the error correction
capability of the standard QR code reader itself, thus the
code can not be correctly decoded.

In this paper, we present “BatchQR”, an APP that can
read densely arranged QR codes as shown in Fig. 1. The
screen shots of the APP are as shown in Fig. 2. Our technical
contributions in realizing BatchQR are as following:

• We present a QR code subregion detection mechanism,
which is dedicated to identify each code in the batch QR
codes image (Section III) . The mechanism can recognize
codes in different sizes by dynamically adjusting design
parameters, which accommodates the practical scenario that
there are various numbers of codes in the batch. The
mechanism is not based on learning but leverages a light-
weighted learning based classifier (Section IV) , which
requires tractable computational resources and presents high
performance compared with pure learning-based and non-
learning-based object detection schemes.

• We propose a simple but effective image refocus mechanism
to deal with the issue of blurred and distorted image in
batch QR code reading (Section V). We make the camera
take another 4 refocused images besides the auto-focused
one when reading the batch codes, where the focus of the 4
images are on the 4 corners of the batch codes image. Since
blur and distortion usually occur in corners and edges of the
batch codes, we could use the high-quality code image in
the refocused images to replace the blurred or distorted one
in the auto-focused image.

• We implement the BatchQR APP in a COTS smartphone
(Section VI), and conduct comprehensive experiments to
examine the performance (Section VII). Results show that
BatchQR can read 160-180 Version 1-L QR codes in batch
with 90%-95% accuracy in 10-14s. In contrast to the regular
QR code reader dealing with the same situation taking about
6-8 minutes, our APP consumes only less than 4% of the
time.

II. BACKGROUND AND RELATED WORK

The QR code is a kind of 2D matrix barcode standardized
in [14], [15], which has been widely used in the clinical
and biological labs for identifying or tracking tubes or vials
containing chemical samples or specimens [3], [4]. Another
option for the scenario is the RFID based lab management
system, which however has been proved expensive [8], [9].
In particular, the price for a typical passive RFID tag is 7-
15 cents [16], [17], [18], but a very frequently used 0.5ml
microcentrifuge tube as shown in the left part of Fig. 1 costs
less than 3 cents [19], where the label is even more expensive
than the tube itself. Consequently, majority of the labs are
still using 1D/2D barcode in the routine clinical and biological
experiments.

To generate a QR code, one needs to first analyze the data
to be encoded and make several important design decisions,
including the code mode, error correction level and version
(size). The character capacity table could facilitate the process
[15], which tabulates the amount of characters can be encoded
under different possible combinations of those design factors.
Then the data could be translated into the codeword, which is
a string of bits including the error correction codes generated
through Reed-Solomon (RS) coding procedure [14], [15].
Regular QR codes normally contain some special patterns,
e.g., the black and white squares in the corners of the code
area can facilitate the reader to locate the coding area in a
code image. The codeword bits will be placed in the code
area after the special patterns are in the positions following
certain rules in [14], where black and white indicate bit 1 and
0, respectively. Decoding is basically the inverse process.

Efforts have been devoted to streamlining design of regular
QR codes [20], [21]. In contrast, our work in this paper
preserves the standard encoding and decoding procedure for
the single QR code in order to accommodate the standard QR
code printers that have been widely used; the advancement
made is to locate and separate each code in a lot of densely
arranged codes, which makes the user feel reading those codes
as reading a regular one.

To realize batch reading, we propose an object detection
mechanism to find the subregions in the codes image, which
contain partial QR code. Object detection can be realized using
the deep learning based approach such as Mask R-CNN [10]
and Faster R-CNN [11], which however normally runs on
high-performance servers equipped with GPU, and requires
a lot of training to fine-tune the CNN. Moreover, as for
non-learning based approaches such as Selective Search[13]
and Edge Boxes[12], our preliminary experiments indicate
that such approaches are inappropriate for detecting densely
arranged objects with similar color and shape. Our proposed
object detection method resolves the issue mentioned above,
which particularly suits the mobile APP.

In order to identify the falsely-positively detected sub-
regions of the codes image, we utilize the MobileNetV2
[22] to perform classification of all detected subregions. In
comparison with the machine learning based approaches such

1217



1,1 1,2

2,1 2,2

⋯ 1,

⋯ 2,

⋮ ⋮

,1 ,2

⋱ ⋮

⋯ ,

R

G

B

1,1 1,2

2,1 2,2

⋯ 1,

⋯ 2,

⋮ ⋮

,1 ,2

⋱ ⋮

⋯ ,

1,1 1,2

2,1 2,2

⋯ 1,

⋯ 2,

⋮ ⋮

,1 ,2

⋱ ⋮

⋯ ,

1,1 1,2

2,1 2,2

⋯ 1,

⋯ 2,

⋮ ⋮

,1 ,2

⋱ ⋮

⋯ ,

IFFT
AND

0 1

1 1

⋯ 0

⋯ 0
⋮ ⋮

0 1

⋱ ⋮

⋯ 1

0 1

1 0

⋯ 0

⋯ 1
⋮ ⋮

0 0

⋱ ⋮

⋯ 0

0 1

1 1

⋯ 0

⋯ 0
⋮ ⋮

1 0

⋱ ⋮

⋯ 0

0 1

1 0

⋯ 0

⋯ 0
⋮ ⋮

0 0

⋱ ⋮

⋯ 0

Binariza�on

Contain

QR Code

Yes
Posi�ve

Cell

No

Nega�ve

Cell

Neighbor

Clustering

Fig. 3: Processing flow for code detection algorithm.

as SVM, Random Forest, and XGBoost [23], MobileNetV2
can achieve higher accuracy; In comparison with the deep
learning based approaches such as CNN, VGG [24] and
Inception-v4 [25], which requires high-performance processor
and high power consumption, MobileNetV2 is power efficient
and fast. MobileNetV2 has a novel layer module taking a low-
dimensional compressed representation as an input, which is
first expanded to high dimension and then projected back to a
linear convolution representation [22].

Our work in this paper propose new techniques and stream-
line existing mechanisms to present a systematical design to
deal with the issue of batch reading densely arranged QR
codes.

III. CODE DETECTION

The first step towards batch reading QR codes is to identify
the subregion in the image which contains the QR code. We
here describe how to frame the QR code area into the bounding
box as shown in Fig. 2.

A. Basic Procedure

The basic procedure is shown in Fig. 3. We divide the image
into M × N cells, with the length of each cell set to be d
pixels. For each of the cell, we need to determine if it contains
a complete or partial QR code. If positive, the cell will be
labeled and then clustered with neighboring labeled cells, so
that we could roughly frame those codes in the image.

In order to determine if a cell should be labeled, we first
decompose the image piece in the cell through RGB channels,
which yields three matrices. For the matrix obtained through
channel R, each element ri,j denotes the value of the pixel’s
red color in the original image. Similarly, gi,j and bi,j denote
the values of the green and blue color of the pixel, respectively.
It is straightforward that subregions containing QR code
fragments present intensive luminance change, as the QR code
is consisted of small black and white squares. To make such
feature more salient for later processing, we perform Inverse
Fast Fourier Transformation (IFFT) to the matrix from each
channel. It is worth mentioning that we could also choose to
perform IFFT to the grey-scale image derived from the original
codes image; however, this could result in high false positive
ratio, because the intensive luminance change in those GRB
matrices are basically caused by the black-and-white pattern
of the QR code, while that in the grey-scale image matrix
could result from many practical environmental factors such
as the lighting condition and the color of the tube’s cap.

Observe the resulted matrices after IFFT, ideally, great
values of the pixels in a given cell indicate the intensive
color change, thus it is likely that the cell contains the QR
code fragment. However, it may occur that values of certain
elements are abnormally high due to unpredictable lighting
conditions and camera angles. This will make the value of
the corresponding cell abnormally high, which however is
not due to the presence of the QR code. To this end, we
perform binarization to the three yielded matrices after IFFT.
In particular, we set a threshold Thb to binarize each elements
in the matrix.

We now have three binarized matrices representing the RGB
channels respectively as shown in Fig. 3, and next we will
combine the three matrices into one that represents the image
of the given cell. In particular, we AND elements that are
located in the same position of those matrices, with the result
set to be the value of the element in the same position of the
combined matrix. If the ratio of 1-elements in the combined
matrix is greater than another threshold Thf , we label the
corresponding cell in the original image, indicating that the
cell contains at least a QR code fragment. For a given labeled
cell, if the four neighboring cells of the cell are also labeled,
we cluster those cells and put them into a bounding box. In
this way, we could roughly identify and frame the subregion
in the image which contains the complete or partial QR code.

B. Self-Adaptive Parameters Configuration

Issues in practical scenarios. If we realize the basic
procedure as mentioned above and apply it to the practical
scenario, the phenomena as shown in Fig. 4 may appear: In
Fig. 4 (a), only a couple of cells are correctly labeled; in
Fig. 4 (b), some cells containing the QR code fragments can
not be identified; in Fig. 4 (c), some cells do not contain
code fragments are incorrectly labeled. The root cause of the
phenomena is that the QR code areas in those images are
different in size, while the edge length of the grid d applied
in those images remains the same.

In particular, the configuration of the two parameters d and
Thf in the basic code detection procedure is the main reason
why this can occur. Recall that Thf is used to determine if
the cell represented by the combined binary matrix contains
code fragments. The value of d and value of Thf should
be appropriately set so that we can accurately capture and
separate the cell containing the QR code’s black-and-white
color feature. In Fig. 4 (a), (b), the value of d is much smaller
than the actual size of a QR code, and each cell could contain

1218



(a) Tiny-cell Issue (b) Small-cell Issue (c) Multi-tag Issue

Fig. 4: Three potential issues in practice when d and Thf are
fixed.

only a very small part of the QR code. In this case, the color
feature of the QR code is not that salient and we should set
a lower threshold Thf to make it easier to identify the cell
containing the code fragment. In Fig. 4 (c), the value of d
is comparable to the actual size of a QR code, but we can
see that some bounding boxes contain codes from multiple
tags because Thf is over low with the given d, because the
area between two tags is falsely recognized as a part of QR
code. We should make Thf higher to these particular bounding
boxes, so that the standard to label a cell is more strict.

Consequently, the values of the tuple < d, Thf > should
be dependent on the size of the code area in the image, which
however is dependent on the application scenario thus can not
be predicted. In order to deal with the issue, we propose a self-
adaptive parameters configuration mechanism to automatically
adjust values of < d, Thf >, which can accommodate the
practical scenario.

Algorithm architecture. Algorithm 1 shows the main pro-
cess of parameter adjustment, where I refers to the input image
with height, width and the RGB channel index being H , W
and C respectively. We first try to set d = ds and Thf = Ths

f ,
where ds is the length of 13 pixels and Ths

f = 0.60. Those
values are obtained by conducting 500+ times of experiments
in different environments for reading about 160 QR codes.
With such initial values, we invoke the operation DetectOnce,
which performs automatic parameter adjustment starting from
< ds, Ths

f >. The details about DetectOnce will be described
later; the set of bounding boxes yielded from the operation is
denoted by Λs. We let those bounded subregions of the image
in Λs go through a classifier. The details of the classifier will
be described in Section IV, and at this point, it only needs
to understand that the output of the classifier is the tuple for
each of the bounding boxes, which indicates the probabilities
that the given bound box are correctly and incorrectly labeled,
respectively. We average the correct labeling probabilities for
the bounding boxes in Λs, which is denoted by Scores.

We then use < dl, Thl
f > to process the image in the similar

way, where dl is the length of 75 pixels and Thl
f = 0.02. Such

values normally work good when reading 1-20 codes, which is
verified by our 500+ experimental results. The set of bounding
boxes yielded with the configuration is denoted by Λl; they
go through the classifier and the corresponding average of the
correct labeling probabilities is denoted by Scorel. We then
compare the two scores and choose the set with higher score,
and classify them again to be the final bounding boxes set.

Thus the problem occurred in Fig. 4 (a) can be solved.

Algorithm 1: SubregionDetect

Input: < ds, Ths
f >, < dl, Thl

f >, IH×W×C

Output: TAG bounding box set Λ
1 Λs ← DetectOnce(ds, Ths

f , I) ;
2 Scores ← Averaged positive probabilities of Λs ;
3 Λl ← DetectOnce(dl, Thl

f , I);
4 Scorel ← Averaged positive probabilities of Λl ;
5 if Scores > Scorel then
6 Λ ← Classify(Λs)

7 else
8 Λ ← Classify(Λl)

It is worth noting that we will not apply both the results
of Λs and Λl in our later processing since it may heavily
increase the processing time, especially when image refocus
mechanism to be mentioned in Section V is triggered multiple
times (single triggering can add about 2s). We note that it
is also possible to evaluate the resulted bounding boxes by
training a classifier to measure the value of intersection of
union (IoU) between the yielded boxes and its potential tightly
enclosure [10], [11]. In particular, we have to manually draw
the bounding box that tightly enclosures the QR code in the
image as the ground truth, which is to serve as the training
dataset for the classifier. However, manually generating the
ground truth dataset is all consuming. In contrast, the clas-
sifier used in our scheme only needs labeling the cell that
contains the code fragments, which brings much convenience
in ground truth data collection. More details will be discussed
in Section IV.

Parameters configuration adjustment. The detailed algo-
rithm is summarized in Algorithm 2, and we here describe the
basic idea of adaptive parameters configuration adjustment.
With the given initial values of the parameters, we run the
basic procedure and then check if

ηmdn ≥ Thl × d2, (1)

where ηmdn denotes the median size of those obtained bound-
ing boxes and Thl = 11 from experimental results. The
inequality above indicates that the cell is too small as shown
in Fig. 4 (b), thus we need to increase d and reduce Thf since
they are highly relevant. In particular, we let d = d × λinc,
Thf = Thf/μdec, and run the basic procedure again. This
operation will be repeated until the inequality (1) no longer
holds. This is to tentatively increase the size of the cell.

We then check if
ηi ≥ Thm × ηmdn, (2)

where ηi is the size of any yielded bounding box and Thm is
set to 3.5 according to our empirical study. This indicates that
the bounding box may contain falsely labeled cells as shown
in Fig. 4 (c), thus we need to grid this bounding box with
finer granularity. In particular, we let d = d/λdec, Thf =
Thf × μinc, and run the basic procedure to this particular

1219



bounding box again. We will repeat the operation until the
condition no longer holds.

Algorithm 2: DetectOnce
Input: d, Thf , IH×W×C

Output: TAG bounding box set Λ
1 Initialize LabelH

d ×W
d

= matrix filled with 0;
2 Grid I by d into CellSetH

d ×W
d ×C ;

3 foreach x ∈ [1, H
d ] do

4 foreach y ∈ [1, W
d ] do

5 Initialize idftg = matrix filled with 1;
6 foreach c ∈ [1, C] do
7 grid g ← CellSet(x, y, c);
8 idftgc ← idft(g);
9 Binarize each element in idftgc by Thb;

10 idftg ← idftg AND idftgc;

11 if ratio of 1s in idftg > Thf then
12 Label(x, y) ← 1;

13 Λ ← NeighborCluster(Label);
14 while Either Eqn. 1 or Eqn. 2 satisfy do
15 foreach Zi ∈ Λ satisfy Eqn. 2 do
16 d ← d

λdec
;

17 Thf ← Thf × μinc;
18 Remove Zi from Λ;
19 Add ObjectProposal(d, Thf , Z

i) to Λ;

20 if ηmdn > Thl × d2 then
21 d ← d× λinc;
22 Thf ← Thf

μdec
;

23 Λ ← ObjectProposal(d, Thf , I);

IV. FALSE POSITIVE CLASSIFICATION

A. Purposes of Classification

We implement a classifier to distinguish if the bounding
box obtained indeed contains a partial QR code. The result of
classification can help determining the parameters configura-
tion as described in Section III; moreover, it can help saving
the batch reading time.

In particular, the code subregion detection process is unable
to identify those QR codes in 100% accuracy, because the
algorithm design is based on detecting the black-and-white
color feature of QR codes. It is supposed that the subregion
containing code fragments has intensive luminance change,
which however may also happen in certain subregions contain-
ing no code fragments. The consequence of the false positive
judgment is that the reader can not recognize the code. In
the regular code reading process, we could just leave the
unrecognizable code area behind.

Nevertheless, in the batch reading scenario, it may happen
that certain part of the codes image is blurred or distorted
because of the factors including the camera’s focus area,
resolution and the angle of reading. Those also result in the

unrecognizable code area, which can not be left behind (How
to deal with this issue will be discussed in Section V). The
problem is, if the unrecoganizable code area emerges, we have
no idea if this is because the subregion indeed contains no code
or the region is blurred/distorted. If it is the former case, the
reader will still invoke the process to be described Section V
to deal with the issue. This will take 2-8s and make the
user uncomfortable. We need to eliminate the false-positively
detected bounding boxes as many as possible, in order to avoid
such unnecessary processing.

B. Classifier Implementation

To identify which subregions indeed contain QR codes and
which are false-positively detected is a typical classification
problem. A number of classifier models could be used to re-
solve the problem, such as SVM, Random Forest and XGBoost
[23]. We first conduct experiments to test if such off-the-shelf
models can be utilized directly. We collect 52000 batch QR
codes images in different environments with different kinds
of tubes for training. We then use another 4900 images to
test this model. The accuracies of the three frequently used
classifier models are 92.6%, 92.7%, 92.2%, respectively. The
performance looks fairly good in percentage, but not good
enough for the specific application scenario. For example, one
of our experiments is to read 160 codes in batch, then the
classifier models above still have about 13 bounding boxes
mistakenly judged, successful decoding rate will decrease 9%
and its corresponding processing time may increase 2-8s.

During the experiments, we find that collecting training data
in the application scenario is not too hard. We can collect
some images containing multiple QR codes and run basic code
detection procedure with simple parameter adjustment but
without operations involving the classifier. We then are able
to obtain up to 100-200 positive and negative samples from
a single image. It takes only about 8 hours to collect 52000
training images. This motivates us to try deep learning based
classifiers. Deep learning models such as traditional CNN and
its variants [24], [25] require high-performance computing
platform, which can not be satisfied in the scenario; therefore,
we choose to implement our classifier with MobileNetV2[22],
a lightweight and accurate architecture suitable for mobile
equipments. First, it can greatly reduces the memory over-
head during inferencing. Second, it can greatly enhance the
inference speed about 8 to 9 times [26] by using a bottleneck
block as the building block of the neural network.

We refer our readers to look at MobileNetV2 paper [22]
for the detailed network structure. It is worth noting that
we use width multiplier α [22] to slim our network in our
implementation, which means that the number of channels in
the same layer will be α times compared to before. Then
the computational loss will be about α2 times. Thus, if we
can reasonably select this parameter, we can process a lot
faster while maintaining a good performance. The detailed
configuration of our neural network will be shown in Sec-
tion VI. Finally, we train this model with the dataset mentioned
earlier, and the testing accuracy can be 98.7%. That is, the

1220



Fig. 5: Distortion and obscurity brought by the limited reso-
lution of camera where green circles represent distortion and
red circles represent obscurity

number of mistakenly judged bounding boxes is 4 in 160 batch
reading scenery, which means only 1/3 error rate compared
with SVM, Random Forest and XGBoost [23]. We integrate
the architecture into our system and the inference speed of
each input is only about 1ms, which is highly satisfactory.

V. IMAGE REFOCUS

We need to decode the QR code captured in the bounding
box after the process described above. Figure 5 shows the
bounding boxes obtained from our experiments. We can see
that some of the code subregions in the image are blurred
or distorted. The two unfavored phenomena could result from
a number of factors such as the lighting conditions and the
angle between the camera and the tubes; however, according
to our experiments, the main reason is because the camera
of the mobile device has limited focus area, and some of the
codes are outside the area when the user wants to read a lot of
codes. Since the focus area of the camera is normally in the
center of the image, the blur and distortion usually happen in
the corners or edges of the image.

The decoding process of the standard QR code requires
the quality of the code image to be reasonably good. Our
experimental results show that some seriously blurred or
distorted QR codes can not be decoded. A straightforward way
to resolve the issue is to utilize deblurring algorithms [27], [28]
to reverse the blurring phenomena, which however are based
on the assumption that the blur phenomenon follows certain
patterns. Such assumptions can hardly hold in the practical
batch codes reading scenarios.

We propose a simple but effective image refocus approach to
deal with the issue. Algorithm 3 shows the main process and its
corresponding procedure is shown in Fig. 6. In particular, we
let the camera take 5 images of those tubes in the background
when batch reading the codes. As shown in Fig. 6, the first
image is the auto-focused one. After that, we take the 4 images
of those codes as backups, with the focus on the top left,
top right, bottom left and bottom right part of those codes
respectively, because the blurred or distorted usually occur
in the corners and edges of the image. If the auto-focused
image contains some blurred or distorted codes that can not
be decoded, we first figure out the phenomena occur in which

����	
��	�
���

����	�
���

��	�	
�	�
���

������	�
���
��������

����	
��	�
��� � � ���	
��	�

���

� � �����	�
���

� ������	�
���

Fig. 6: Pipeline of image refocus algorithm where red rectan-
gles in initial phone means this tag cannot be decoded, green
rectangles means the opposite.

Algorithm 3: ImageRefocus

Input: Λundecoded, I
auto, I1st, I2nd, I3rd, I4th

1 quadrantSet ← {1st, 2nd, 3rd, 4th};
2 Divide Λundecoded into

{Λ1st
undecoded,Λ

2nd
undecoded,Λ

3rd
undecoded,Λ

4th
undecoded};

3 foreach qd ∈ quadrantSet do
4 if No undecoded bounding box in quadrant qd then
5 skip the current quadrant qd;

6 Initialize Point Set Ψqd
undecoded

7 foreach Zj
undecoded ∈ Λqd

undecoded do
8 Put four corners of Zj

undecoded to Ψqd
undecoded

9 Ψqd
aligned ← Align(Iauto, Iqd,Ψqd

undecoded);
10 Every four points in Ψqd

aligned construct a minimum
bounding box Zj

aligned, put Zj
aligned to Λqd

aligned;
11 Λqd

detected ←
SubregionDetect(ds, Ths

f , d
l, Thl

f , I
qd);

12 Λqd
detected ← Classify(Λqd

detected);
13 foreach Zj

aligned ∈ Λqd
aligned do

14 Select Zk
detected with maximum IoUj,k;

15 Recode Zk
detected into Λqd

mapped;

16 Decode each subregion in Λqd
mapped and replace

undecoded results of Λqd
undecoded.

part of the image. The auto-focused image is equally divided
into 4 quadrants. If the blur or distortion happens in the
2nd quadrant, we will try to locate the blurred or distorted
code’s backup in the top-left focused image. Thus, it is more
likely we can decode the backup code, which contains the
same information as the code in the original image. However,
accurately locating the blurred or distorted code’s counterpart
in the backup image is not straightforward, because the hand-
shake may happen to the user when taking those 5 images,
which incurs displacement of the backup images compared
with the original one. We thus need to align the two images

1221



before locating the backup code. In our mechanism, we use the
fast and memory efficient image alignment algorithm [29] to
align those backup images and the original auto-focused one.
In particular, we align the bounding boxes in the auto-focused
image with that in the backup image. Note that the image
alignment algorithm [29] can only align points in the previous
image to their current positions in the next image. Thus, when
processing the refocus in each quadrant qd (in the Fig. 6,
qd = 2nd) , we will extract the corners of all the bounding
boxes in undecoded bounding box set Λqd

undecoded and arrange
their corners into Point Set Ψqd

undecoded in order. And pass
Ψqd

undecoded into the alignment algorithm. Then we can get
the generated Point Set Ψqd

aligned and we will recompose the
bounding box set Λqd

aligned using the points in Ψqd
aligned in

order. Note that we cannot directly decode the bounding boxes
in Λqd

aligned as the substitution of Λqd
undecoded. Due to the

imperfection of alignment algorithm, the generated bounding
boxes in Ψqd

aligned can hardly contain a whole part of one QR
code. Thus, these bounding boxes in Λqd

aligned can indicate the
current positions of the previous bounding boxes.

In order to overcome the above problems, we apply the
code subregion detection mentioned in Section III again to
these refocused photos, and pass them though the classifier
mentioned in Section IV and we can get the bounding box
set Λqd

detected. We need to map each previously aligned subre-
gion Zj

aligned ∈ Λqd
aligned to each current detected subregion

Zk
detected ∈ Λqd

detected. In order to utilize both the location and
shape information of Zj

aligned to guide us to select the most
similar bounding box Zk

detected, here we use Intersection over
Union (IoU) as the metrics to measure the similarity between
Zk
detected and Zj

aligned. For each region Zj
aligned in Λqd

aligned,
we will map it to the region Zk

detected with the maximum IoU
of Quadrant qd refocused photo to be mapped, and record this
mapped subregion into bounding box set Λqd

mapped. Finally, we
will decode Λqd

mapped to replace the error decoding subregions
in the auto-focused photo to compensate the focus problem.

VI. IMPLEMENTATION

The settings of above parameters are: Thb = 1, ds = 13,
Ths

f = 0.6, dl = 75, Thl
f = 0.02, Thl = 11, Thm = 3.5,

λdec = 2, μinc = 1.3, λinc = 2, μdec = 2.5. And we use
the famous deep learning framework TensorFlow to train our
MobileNetV2 based classifier by setting training batch size to
32, input image size to 32×32×3, width multiplier α to 0.35
and output vector to two-value vector. Our network is trained
from scratch and our learning rate is set to 0.01, weight decay
rate is set to 0.99 per 4 epochs. Then we trained about 100
epochs on Nvidia 1080Ti which costs about 6 hours. Finally,
we convert the produced TensorFlow model into TensorFlow
Lite model which is highly compatible and optimized with
Android phones. As for the image refocus part, we use the
Camera2 API in Android to automatically force the camera
to focus on four quadrant regions. Note that we do not use
the preview frames of the camera as the processing photos
in our algorithms since the maximum resolution of preview

frames is always lower than that of captured photos due to the
bandwidth limitation of the hardware bus connecting camera
module to the inner circuits of phone. We realize all those
mechanisms to create an the BatchQR APP, which is installed
in a Google Pixel phone with Android 8.0 system.

VII. EXPERIMENTS

We conduct experiments to test the performance and robust-
ness of our APP. The default configuration of the experiments
is as following: the captured image is fully filled with the
QR tags, thus more tags in the image means smaller size of
each tag; the environmental luminance level is around 240lx;
the QR code is Version 1-L considering the limitation of the
space on the cap of the tube. Such code can contain up to 41
numeric numbers or 25 alphanumeric numbers [14], which is
equivalent to 1041 unique IDs and more than enough for the
application scenario.

A. Influence by Number of QR codes

We use three types of frequently used tubes with volumes
50ml, 10ml and 5ml respectively to evaluate performance of
the BatchQR. Results are shown in Fig. 8 which are average
values of 15 repetitive experiments and their corresponding
numerical results are tabulated in Table. I.

TABLE I: Statistics of results in Fig. 8

Tube Type Attributes Min Max Mean Median

50ml Tube
Detection Rate (%) 99.69 100.00 99.97 100.00
Decoding Rate (%) 88.46 100.00 98.01 99.57

Latency (s) 2.36 10.75 5.13 4.27

10ml Tube
Detection Rate (%) 87.50 100.00 98.33 100.00
Decoding Rate (%) 75.00 99.50 95.30 97.92

Latency (s) 2.60 14.83 8.00 7.87

5ml Tube
Detection Rate (%) 92.17 100.00 96.08 96.04
Decoding Rate (%) 82.91 99.17 92.78 94.40

Latency (s) 2.37 14.44 7.70 6.61

1) Accuracy Analysis: The subfigures in the upper part of
Fig. 8 (a), (b) and (c) illustrate code detection and decoding
rates of the three kinds of tubes respectively. Note that the
blue dotted curve represents the rate that the QR code can
be successfully detected using our code detection mechanism,
while other curves represent the ratios that detected codes
can be successfully decoded. In this sense, the code detection
rate can be regarded as a upper bound of the decoding
rate. BatchQR has three important modules as described in
previous section, i.e., code detection, false-positive classifier
and refocus scheme, and we here examine their functionalities
under different numbers of tubes in the batch. “Basic” means
the basic code detection procedure with simple parameter
adjustment operations but without operations involving the
classifier. “BatchQR” means the mechanism with all the
components put together. The experimental results indicate the
following points:
• Our code detection mechanism can detect the QR codes

in batch in 100% most of the time, but the performance
degrades on those 5ml tubes. This is because the distance

1222



Google Pixel

50ml tubes

5ml tubes

10ml tubes

Fig. 7: Experimental Equipments

1 2 3 4 5
QR Version

0

50

100

150

200

250

C
ap

ac
ity

50ml Tubes
10ml Tubes
5ml Tubes

Fig. 9: QR code version v.s. ca-
pacity

0 50 100 150
Number of Codes

80

85

90

95

100

S
uc

ce
ss

fu
l D

ec
od

in
g 

R
at

e 
(%

)

Code Detection Rate
Basic Procedure
Basic + Classifier
Basic + Refocus
BatchQR

5 10 15 20
0

20

40

60

80

100

0 50 100 150
Number of Codes

2

4

6

8

10

12

14

16

La
te

nc
y 

(s
)

Basic Procedure
Basic + Classifier
Basic + Refocus
BatchQR

(a) Results on 50ml Tubes

0 50 100 150
Number of Codes

80

85

90

95

100

S
uc

ce
ss

fu
l D

ec
od

in
g 

R
at

e 
(%

)

Code Detection Rate
Basic Procedure
Basic + Classifier
Basic + Refocus
BatchQR

5 10 15 20
0

20

40

60

80

100

0 50 100 150
Number of Codes

2

4

6

8

10

12

14

16

La
te

nc
y 

(s
)

Basic Procedure
Basic + Classifier
Basic + Refocus
BatchQR

(b) Results on 10ml Tubes

0 50 100 150
Number of Codes

80

85

90

95

100

S
uc

ce
ss

fu
l D

ec
od

in
g 

R
at

e 
(%

)

Code Detection Rate
Basic Procedure
Basic + Classifier
Basic + Refocus
BatchQR

5 10 15 20
0

20

40

60

80

100

0 50 100 150
Number of Codes

2

4

6

8

10

12

14

16

La
te

nc
y 

(s
)

Basic Procedure
Basic + Classifier
Basic + Refocus
BatchQR

(c) Results on 5ml Tubes

Fig. 8: Experimental Results on different total QR tag counts and different kind of tubes

between neighboring tubes in this case is quite small, mak-
ing our mechanism prone to mistakenly clustering multiple
codes into a single bounding box. This will make the
detection rate decrease but in a very small scale.

• The proposed image refocus mechanism plays an important
role, which could improve the average successful decoding
rate by 2-6%. That is, if the user wants to read 160 codes
in batch, then about 6 more codes can be successfully
decoded with image refocus mechanism. This will save tens
of seconds that would been spent on manually locating and
reading those 6 codes one after another. The outstanding
contribution of the refocus mechanism indicates that the
quality of the batch codes is the main bottleneck when batch
reading the QR codes. Generally, when more QR tags are
captured in one image, this phenomenon is more obvious.
Our image refocus mechanism could potentially neutralize
the negative impact of the bottleneck.

• The false positive classifier is very useful when there are
small numbers of codes in the batch. We can see that when
the number of tags is larger than 20, the successful decoding
rate drops a little: less than or nearly equal to 1%. This
is because the classifier may make mistakes. However, the
benefit brought by the classifier over weighs the limited
drawback. First, recall that the classifier is used to differ-
entiate the false positive bounding box that contains no QR
tag at all, and also used determine appropriate parameters.
Note the successful decoding rates when the number of tags
is smaller than 20, we can find that the classifier can raise
the decoding rate to about 85% on average. Second, runtime
saving, which will be discussed in the following subsection.
2) Latency Analysis: The subfigures in the lower part of

Fig. 8 (a), (b) and (c) illustrate the latency of batch reading
three kinds of tubes respectively. The experimental results
indicate the following points:
• In Fig. 8 (a) (c), we can see that the benefit classifier brings

is noticeable, which saves up to 5s, accounting for 50%
of the total processing time. First, the classifier can save
QR code decoding time by removing many false positive

samples to save code decoding time where the decoding
time for each of the code itself is 2ms-30ms depending to
its size. Second, it can save the image refocus procedure
falsely triggered by those false positive samples which cost
averagely 2s when one quadrant of the photo is triggered.
However, we can see that in Fig. 8(b), the classifier may not
decrease the time cost to the whole system. This is because
due to the specific shape of 10ml tubes, the camera can
hardly fully focus on the entire image. It is unavoidable that
some tags are obscure in the auto-focused image, and image
refocus is often triggered in this way, thus the classification
cannot provide an obvious time cost elimination.

• As the number of tags increases, the final processing latency
of BatchQR increases; latency is generally in the order of
seconds with Google Pixel, which is satisfactory on mobile.

B. Influence by QR Code Version

The pattern and size of the QR code is mainly determined
by the code version, which could impact the image processing
mechanism in the BatchQR. In the experiment, we fix the
width of the QR code, and define capacity of BatchQR as
the maximum number of QR codes that can be successfully
decoded in at least 90%. Figure 9 shows results, where it is
straightforward that the higher version of the code pattern
results in lower capacity. This is because higher versions
contain more information, and the black-and-white pattern is
more complicated. To successfully decode such codes require
the image of each single code to be with comparatively higher
quality. This trend is more obvious for small size tubes as
shown in the figure. We want to emphasize that our code
detection mechanism can detect those codes even if they are
very small, because the black-and-white pattern still present
no matter how complicated it is.

C. Influence by Luminance Condition

To evaluate how the environmental luminance conditions
affect BatchQR, we do these experiments on 160 50ml
tubes.Results are tabulated in Table II. We can see that the
performance is good in 150-3500 lux, where 150lx is like

1223



the condition of a room with lights on in the nighttime and
3500lx is like the condition of a room with sunlight. The
results indicate that our APP can cover almost all the practical
environments. Also, we can see that when the light is darker,
i.e., 3lx or 25lx, the decoding process of each QR code is
the obvious bottleneck rather than our proposed detection
algorithm, simply because in such environment, the distortion
and obscurity of each QR tag will be more obvious; therefore,
the low successful decoding rate is unavoidable. However, we
can see that image refocus algorithm can largely remedy this
situation in 25lx environment which is not totally dark, which
averagely increase the successful decoding rate by nearly 10%.
This is because in such environment, to accurately capture
the details of each QR codes is a difficulty due to reasons
mentioned above. However, refocus can provide better results
because one image only needs to focus on 1/4 regions.

TABLE II: Performance Under Different Illumination

Lux Detected Before Refocus After Refocus Total Time (s)
3 47.20 0.00 0.60 12.23
25 156.38 98.54 113.00 14.17

150 158.91 145.09 148.82 11.14
300 159.18 147.29 152.94 10.11
540 152.73 144.27 149.87 12.33
1500 151.57 147.79 150.43 10.68
3500 154.14 148.43 152.64 10.56

VIII. CONCLUSION

This paper has presented BatchQR, a mobile APP that
can batch read densely arranged QR codes attached to caps
of the tubes and vials in clinical and biological labs. We
have proposed code subregion detection algorithm with high
speed and reliability. Moreover, we have proposed a false-
positive classifier to sift out the false positive subregions to
save needless processing time. At last, we have designed a
image refocus scheme to remedy the distortion and obscurity
in the corners of captured image. Combining the three pro-
posed modules constitutes the overall architecture of BatchQR.
Further, we have analyzed the accuracy and robustness of our
system. It turns out that BatchQR can read and decode 160-
180 Version 1-L QR codes with 90%-95% accuracy in 10-14s
under practical illumination, which is only 4% of the time
consumed by the regular QR code reader in the same situation.

IX. ACKNOWLEDGEMENT

The work in this paper is supported by the National Natural
Science Foundation of China (NSFC) 61572319,61872233,
61829201, 61532012, 61325012, 61428205.

REFERENCES

[1] Clinical and Laboratory Standards Institute (CILS), Global Laboratory
Standards for a Healthier World, Online:https://clsi.org/.

[2] Clinical and Laboratory Standards Institute (CILS), Specimen Labels:
Content and Location, Fonts, and Label Orientation, 1st Edition,
Online:https://clsi.org/standards/products/automation-and-informatics/
documents/auto12/, Apr. 2011.

[3] Clinical and Laboratory Standards Institute (CILS), Barcode
Labelling: The Basics, Online:https://www.cils-international.com/
en/information-centre/blog/articles/barcode-labelling-the-basics/.

[4] ThermoFisher, Abgene 2D Barcoded 2mL Screw Cap Storage
Tubes, Online:https://assets.thermofisher.com/TFS-Assets/LCD/
Specification-Sheets/D17415∼.pdf.

[5] QRStaff, Creating QR Codes In Bulk, Online:https://blog.qrstuff.com/
2017/12/10/how-to-create-qr-codes-in-bulk, Dec. 2017.

[6] Barcodez, Bulk Barcode Generator, Online:http://www.barcodez.net/.
[7] ZXing, barcode scanning library for Java, Android, Online:https://github.

com/zxing/zxing.
[8] EuroCPS, Smartlab, Sample Management With

RFID Tags for Laboratories, Online:https://www.
eurocps.org/innovators-projects/ongoing-projects/
smartlab-sample-management-with-rfid-tags-for-laboratories/.

[9] Techno Medica, RFID Specimen Management System: TRIPS,
Online:http://www.technomedica.co.jp/t01/EnglishPage/products/
solution/3/trips.html.

[10] K. He, G. Gkioxari, P. Dollár and R. Girshick, “Mask R-CNN,” in Proc.
IEEE ICCV, 2017, pp. 2980-2988.

[11] S. Ren, K. He, R. Girshick and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Proc. NIPS, 2015,
pp. 91-99.

[12] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals
from edges,”, in Proc. ECCV, 2014, pp. 391-405.

[13] J. R. R. Uijlings, K. E. A. V. D. S, T. Gevers and A. W. M. Smeulders,
“Selective search for object recognition,” IJCV, vol. 104, no. 2, pp. 154-
171, 2013.

[14] ISO White Paper, QR Code Bar Code Symbology Specification,
Online:https://www.iso.org/standard/62021.html.

[15] Thonky, QR Code Tutorial: Introduction, Online:https://www.thonky.
com/qr-code-tutorial/introduction.

[16] Xminnov, How Much Is RFID Tags What is RFID tag cost, Online:http:
//www.rfidtagworld.com/news/RFID-Knowledge-IOT-Knowledge 555.
html.

[17] RFID Journal, RFID Frequently Asked Questions, Online:https://www.
rfidjournal.com/faq/show?85.

[18] Barcoding, RFID Frequently Asked Questions, Online:https://www.
barcoding.com/resources/frequently-asked-questions-faq/rfid-faqs/.

[19] Amazon, Micro Centrifuge Lab Tubes, Online:https://www.amazon.
com/Micro-Centrifuge-Lab-Tubes/b/ref=dp bc 5?ie=UTF8&node=
318099011.

[20] H. K. Chu, C. S. Chang, R. R. Lee and N. J. Mitra, “Halftone QR
Codes,” ACM TOG, vol.32, no.6, pp. 217, 2013.

[21] S. S. Lin, M. C. Hu, C. H. Lee and T. Y. Lee,“Efficient QR Code
Beautification With High Quality Visual Content,” IEEE TOM, vol.17,
no.9, pp. 1515-1524, 2015.

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. Chen, “Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks,” in Proc. IEEE
CVPR, 2018, pp. 4510-4520.

[23] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
in Proc. ACM SIGKDD, 2016, pp. 785-794.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” Online:http://arxiv.org/pdf/1409.1556.
pdf.

[25] C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proc. AAAI, 2017, pp. 12.

[26] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.
Weyand, M. Andreetto and H. Adam, “MobileNets: Efficient Convo-
lutional Neural Networks for Mobile Vision Applications,” Online:http:
//arxiv.org/pdf/1704.04861.pdf.

[27] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin and J. Matas,
“DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial
Networks,” Online:http://arxiv.org/pdf/1711.07064.pdf

[28] M. Maggioni, E. Sánchez-Monge and A. Foi, “Joint removal of random
and fixed-pattern noise through spatiotemporal video filtering,” IEEE
TIP, vol. 23, no. 10, pp. 4282-4296, 2014.

[29] J. Y. Bouguet, “Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm,” Intel Corporation, vol. 5,
no. 1-10 , pp. 4, 2001.

[30] Wikipedia contributors, Image noise, Online:https://en.wikipedia.org/
wiki/Image noise

1224


